Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-22280281

Résumé

By August 1, 2022, the SARS-CoV-2 virus had caused over 90 million cases of COVID-19 and one million deaths in the United States. Since December 2020, SARS-CoV-2 vaccines have been a key component of US pandemic response; however, the impacts of vaccination are not easily quantified. Here, we use a dynamic county-scale metapopulation model to estimate the number of cases, hospitalizations, and deaths averted due to vaccination during the first six months of vaccine availability. We estimate that COVID-19 vaccination was associated with over 8 million fewer confirmed cases, over 120 thousand fewer deaths, and 700 thousand fewer hospitalizations during the first six months of the campaign.

2.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-22271905

Résumé

BackgroundSARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. MethodsNine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. FindingsAbsent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. ConclusionsResults from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants.

3.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21262748

Résumé

What is already known about this topic?The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July--December 2021. What is added by this report?Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July--December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. What are the implications for public health practice?Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.

4.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21252240

Résumé

Nearly one year into the COVID-19 pandemic, the first SARS-COV-2 vaccines received emergency use authorization and vaccination campaigns began. A number of factors can reduce the averted burden of cases and deaths due to vaccination. Here, we use a dynamic model, parametrized with Bayesian inference methods, to assess the effects of non-pharmaceutical interventions, and vaccine administration and uptake rates on infections and deaths averted in the United States. We estimate that high compliance with non-pharmaceutical interventions could avert more than 60% of infections and 70% of deaths during the period of vaccine administration, and that increasing the vaccination rate from 5 to 11 million people per week could increase the averted burden by more than one third. These findings underscore the importance of maintaining non-pharmaceutical interventions and increasing vaccine administration rates.

5.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21251777

Résumé

The COVID-19 pandemic disrupted health systems and economies throughout the world during 2020 and was particularly devastating for the United States. Many of epidemiological features that produced observed rates of morbidity and mortality have not been thoroughly assessed. Here we use a data-driven model-inference approach to simulate the pandemic at county-scale in the United States during 2020 and estimate critical, time-varying epidemiological properties underpinning the dynamics of the virus. The pandemic in the US during 2020 was characterized by an overall ascertainment rate of 21.6% (95% credible interval (CI):18.9 - 25.5%). Population susceptibility at years end was 68.8% (63.4 - 75.3%), indicating roughly one third of the US population had been infected. Community infectious rates, the percentage of people harboring a contagious infection, rose above 0.8% (0.6 - 1.0%) before the end of the year, and were as high as 2.4% in some major metropolitan areas. In contrast, the infection fatality rate fell to 0.3% by years end; however, community control of transmission, estimated from trends of the time-varying reproduction number, Rt, slackened during successive pandemic waves. In the coming months, as vaccines are distributed and administered and new more transmissible virus variants emerge and spread, greater use of non-pharmaceutical interventions will be needed.

6.
Estee Y Cramer; Evan L Ray; Velma K Lopez; Johannes Bracher; Andrea Brennen; Alvaro J Castro Rivadeneira; Aaron Gerding; Tilmann Gneiting; Katie H House; Yuxin Huang; Dasuni Jayawardena; Abdul H Kanji; Ayush Khandelwal; Khoa Le; Anja Muehlemann; Jarad Niemi; Apurv Shah; Ariane Stark; Yijin Wang; Nutcha Wattanachit; Martha W Zorn; Youyang Gu; Sansiddh Jain; Nayana Bannur; Ayush Deva; Mihir Kulkarni; Srujana Merugu; Alpan Raval; Siddhant Shingi; Avtansh Tiwari; Jerome White; Neil F Abernethy; Spencer Woody; Maytal Dahan; Spencer Fox; Kelly Gaither; Michael Lachmann; Lauren Ancel Meyers; James G Scott; Mauricio Tec; Ajitesh Srivastava; Glover E George; Jeffrey C Cegan; Ian D Dettwiller; William P England; Matthew W Farthing; Robert H Hunter; Brandon Lafferty; Igor Linkov; Michael L Mayo; Matthew D Parno; Michael A Rowland; Benjamin D Trump; Yanli Zhang-James; Samuel Chen; Stephen V Faraone; Jonathan Hess; Christopher P Morley; Asif Salekin; Dongliang Wang; Sabrina M Corsetti; Thomas M Baer; Marisa C Eisenberg; Karl Falb; Yitao Huang; Emily T Martin; Ella McCauley; Robert L Myers; Tom Schwarz; Daniel Sheldon; Graham Casey Gibson; Rose Yu; Liyao Gao; Yian Ma; Dongxia Wu; Xifeng Yan; Xiaoyong Jin; Yu-Xiang Wang; YangQuan Chen; Lihong Guo; Yanting Zhao; Quanquan Gu; Jinghui Chen; Lingxiao Wang; Pan Xu; Weitong Zhang; Difan Zou; Hannah Biegel; Joceline Lega; Steve McConnell; VP Nagraj; Stephanie L Guertin; Christopher Hulme-Lowe; Stephen D Turner; Yunfeng Shi; Xuegang Ban; Robert Walraven; Qi-Jun Hong; Stanley Kong; Axel van de Walle; James A Turtle; Michal Ben-Nun; Steven Riley; Pete Riley; Ugur Koyluoglu; David DesRoches; Pedro Forli; Bruce Hamory; Christina Kyriakides; Helen Leis; John Milliken; Michael Moloney; James Morgan; Ninad Nirgudkar; Gokce Ozcan; Noah Piwonka; Matt Ravi; Chris Schrader; Elizabeth Shakhnovich; Daniel Siegel; Ryan Spatz; Chris Stiefeling; Barrie Wilkinson; Alexander Wong; Sean Cavany; Guido Espana; Sean Moore; Rachel Oidtman; Alex Perkins; David Kraus; Andrea Kraus; Zhifeng Gao; Jiang Bian; Wei Cao; Juan Lavista Ferres; Chaozhuo Li; Tie-Yan Liu; Xing Xie; Shun Zhang; Shun Zheng; Alessandro Vespignani; Matteo Chinazzi; Jessica T Davis; Kunpeng Mu; Ana Pastore y Piontti; Xinyue Xiong; Andrew Zheng; Jackie Baek; Vivek Farias; Andreea Georgescu; Retsef Levi; Deeksha Sinha; Joshua Wilde; Georgia Perakis; Mohammed Amine Bennouna; David Nze-Ndong; Divya Singhvi; Ioannis Spantidakis; Leann Thayaparan; Asterios Tsiourvas; Arnab Sarker; Ali Jadbabaie; Devavrat Shah; Nicolas Della Penna; Leo A Celi; Saketh Sundar; Russ Wolfinger; Dave Osthus; Lauren Castro; Geoffrey Fairchild; Isaac Michaud; Dean Karlen; Matt Kinsey; Luke C. Mullany; Kaitlin Rainwater-Lovett; Lauren Shin; Katharine Tallaksen; Shelby Wilson; Elizabeth C Lee; Juan Dent; Kyra H Grantz; Alison L Hill; Joshua Kaminsky; Kathryn Kaminsky; Lindsay T Keegan; Stephen A Lauer; Joseph C Lemaitre; Justin Lessler; Hannah R Meredith; Javier Perez-Saez; Sam Shah; Claire P Smith; Shaun A Truelove; Josh Wills; Maximilian Marshall; Lauren Gardner; Kristen Nixon; John C. Burant; Lily Wang; Lei Gao; Zhiling Gu; Myungjin Kim; Xinyi Li; Guannan Wang; Yueying Wang; Shan Yu; Robert C Reiner; Ryan Barber; Emmanuela Gaikedu; Simon Hay; Steve Lim; Chris Murray; David Pigott; Heidi L Gurung; Prasith Baccam; Steven A Stage; Bradley T Suchoski; B. Aditya Prakash; Bijaya Adhikari; Jiaming Cui; Alexander Rodriguez; Anika Tabassum; Jiajia Xie; Pinar Keskinocak; John Asplund; Arden Baxter; Buse Eylul Oruc; Nicoleta Serban; Sercan O Arik; Mike Dusenberry; Arkady Epshteyn; Elli Kanal; Long T Le; Chun-Liang Li; Tomas Pfister; Dario Sava; Rajarishi Sinha; Thomas Tsai; Nate Yoder; Jinsung Yoon; Leyou Zhang; Sam Abbott; Nikos I Bosse; Sebastian Funk; Joel Hellewell; Sophie R Meakin; Katharine Sherratt; Mingyuan Zhou; Rahi Kalantari; Teresa K Yamana; Sen Pei; Jeffrey Shaman; Michael L Li; Dimitris Bertsimas; Omar Skali Lami; Saksham Soni; Hamza Tazi Bouardi; Turgay Ayer; Madeline Adee; Jagpreet Chhatwal; Ozden O Dalgic; Mary A Ladd; Benjamin P Linas; Peter Mueller; Jade Xiao; Yuanjia Wang; Qinxia Wang; Shanghong Xie; Donglin Zeng; Alden Green; Jacob Bien; Logan Brooks; Addison J Hu; Maria Jahja; Daniel McDonald; Balasubramanian Narasimhan; Collin Politsch; Samyak Rajanala; Aaron Rumack; Noah Simon; Ryan J Tibshirani; Rob Tibshirani; Valerie Ventura; Larry Wasserman; Eamon B O'Dea; John M Drake; Robert Pagano; Quoc T Tran; Lam Si Tung Ho; Huong Huynh; Jo W Walker; Rachel B Slayton; Michael A Johansson; Matthew Biggerstaff; Nicholas G Reich.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-21250974

Résumé

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multi-model ensemble forecast that combined predictions from dozens of different research groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naive baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-week horizon 3-5 times larger than when predicting at a 1-week horizon. This project underscores the role that collaboration and active coordination between governmental public health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks. Significance StatementThis paper compares the probabilistic accuracy of short-term forecasts of reported deaths due to COVID-19 during the first year and a half of the pandemic in the US. Results show high variation in accuracy between and within stand-alone models, and more consistent accuracy from an ensemble model that combined forecasts from all eligible models. This demonstrates that an ensemble model provided a reliable and comparatively accurate means of forecasting deaths during the COVID-19 pandemic that exceeded the performance of all of the models that contributed to it. This work strengthens the evidence base for synthesizing multiple models to support public health action.

7.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20248784

Résumé

In this communication we assess the potential benefit of SARS-COV-2 pandemic vaccination in the US and show how continued use of non-pharmaceutical interventions (NPIs) will be crucial during implementation.

8.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20177493

Résumé

BackgroundThe COVID-19 pandemic has driven demand for forecasts to guide policy and planning. Previous research has suggested that combining forecasts from multiple models into a single "ensemble" forecast can increase the robustness of forecasts. Here we evaluate the real-time application of an open, collaborative ensemble to forecast deaths attributable to COVID-19 in the U.S. MethodsBeginning on April 13, 2020, we collected and combined one- to four-week ahead forecasts of cumulative deaths for U.S. jurisdictions in standardized, probabilistic formats to generate real-time, publicly available ensemble forecasts. We evaluated the point prediction accuracy and calibration of these forecasts compared to reported deaths. ResultsAnalysis of 2,512 ensemble forecasts made April 27 to July 20 with outcomes observed in the weeks ending May 23 through July 25, 2020 revealed precise short-term forecasts, with accuracy deteriorating at longer prediction horizons of up to four weeks. At all prediction horizons, the prediction intervals were well calibrated with 92-96% of observations falling within the rounded 95% prediction intervals. ConclusionsThis analysis demonstrates that real-time, publicly available ensemble forecasts issued in April-July 2020 provided robust short-term predictions of reported COVID-19 deaths in the United States. With the ongoing need for forecasts of impacts and resource needs for the COVID-19 response, the results underscore the importance of combining multiple probabilistic models and assessing forecast skill at different prediction horizons. Careful development, assessment, and communication of ensemble forecasts can provide reliable insight to public health decision makers.

9.
Preprint Dans Anglais | medRxiv | ID: ppmedrxiv-20170555

Résumé

Current projections and unprecedented storm activity to date suggest the 2020 Atlantic hurricane season will be extremely active and that a major hurricane could make landfall during the global COVID-19 pandemic. Such an event would necessitate a large-scale evacuation, with implications for the trajectory of the pandemic. Here we model how a hypothetical hurricane evacuation from four counties in southeast Florida would affect COVID-19 case levels. We find that hurricane evacuation increases the total number of COVID-19 cases in both origin and destination locations; however, if transmission rates in destination counties can be kept from rising during evacuation, excess evacuation-induced case numbers can be minimized by directing evacuees to counties experiencing lower COVID-19 transmission rates. Ultimately, the number of excess COVID-19 cases produced by the evacuation depends on the ability of destination counties to meet evacuee needs while minimizing virus exposure through public health directives.

SÉLECTION CITATIONS
Détails de la recherche